- Analytics & Modeling - Predictive Analytics
- Renewable Energy
- Business Operation
- Machine Condition Monitoring
Wind provides clean, renewable energy. The core concept is simple: wind turbines spin blades to generate power. However, today's systems are anything but simple. Modern wind turbines have blades that sweep a 120 meter circle, cost more than 1 million dollars and generate multiple megawatts of power. Each turbine may include up to 1,000 sensors and actuators – integrating strain gages, bearing monitors and power conditioning technology. The turbine can control blade speed and power generation by altering the blade pitch and power extraction. Controlling the turbine is a sophisticated job requiring many cooperating processors closing high-speed loops and implementing intelligent monitoring and optimization algorithms. But the real challenge is integrating these turbines so that they work together. A wind farm may include hundreds of turbines. They are often installed in difficult-to-access locations at sea. The farm must implement a fundamentally and truly distributed control system. Like all power systems, the goal of the farm is to match generation to load. A farm with hundreds of turbines must optimize that load by balancing the loading and generation across a wide geography. Wind, of course, is dynamic. Almost every picture of a wind farm shows a calm sea and a setting sun. But things get challenging when a storm goes through the wind farm. In a storm, the control system must decide how to take energy out of gusts to generate constant power. It must intelligently balance load across many turbines. And a critical consideration is the loading and potential damage to a half-billion-dollar installed asset. This is no environment for a slow or undependable control system. Reliability and performance are crucial.
Siemens Wind Power is one of the world's largest wind turbine manufacturers. Siemens Wind Power decided to use an Industrial Internet-based solution powered by RTI Connext® DDS to integrate its systems. Industrial Internet with Connext DDS enables fast control within turbines, distributed gust mitigation across the array, and integration back to the control center for predictive maintenance and business diagnostics. With Connext DDS, a Siemens Wind Power farm is a smart, distributed machine. It optimizes power, monitors its own health and reacts to its environment. Industrial Internet with DDS provides fast communication and control within the turbines, distributed gust mitigation across the entire wind farm, and communication and integration with the back-end control center for predictive maintenance and business diagnostics.
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.