Technology Category
- Application Infrastructure & Middleware - Data Visualization
- Platform as a Service (PaaS) - Application Development Platforms
Applicable Industries
- Cement
- Retail
Use Cases
- Leasing Finance Automation
- Retail Store Automation
Services
- Cloud Planning, Design & Implementation Services
- Training
About The Customer
PDPAOLA is an online jewelry company that offers hundreds of unique, high-quality products. Founded in 2014, the company is a balanced combination of the creative and business worlds, working towards disrupting the jewelry industry. PDPAOLA operates on a global scale and uses a data stack that includes Shopify, Google Cloud, Dataprep, BigQuery, Stitch, and Data Studio. The company is committed to standing out in a crowded eCommerce market by leveraging data to gain more granular insights into its business operations.
The Challenge
PDPAOLA, an online jewelry company, was faced with the challenge of differentiating itself in a crowded market. The company's Shopify eCommerce platform provided high-level profit margin analytics, but PDPAOLA wanted to delve deeper into the data to uncover more granular insights such as net margins or contribution margins. As the company began to build out data pipelines using SQL on Google Cloud, it quickly realized that it would reach a scalability limit. Hiring additional SQL developers and training them on the company’s unique processes would require significant time and resources. PDPAOLA needed a platform that would increase automation, allowing it to scale without added expenditure.
The Solution
PDPAOLA chose Google Cloud Dataprep as it integrates natively with the Google Cloud Platform, enabling the team to quickly migrate its work to Dataprep. The team now uses Stitch to ingest a variety of data sources, Dataprep to build pipelines that clean and structure diverse data in BigQuery, and Google Data Studio for data visualization and reporting. Thanks to Dataprep’s automation, PDPAOLA has been able to advance its analytics efforts without hiring new employees. When new employees are hired, Dataprep's visual data flows allow them to quickly understand where data is coming from and how it’s being transformed. PDPAOLA uses Dataprep to fuel Data Studio dashboards that report advanced insights down to each individual SKU, enabling smarter and more precise business decisions.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
System 800xA at Indian Cement Plants
Chettinad Cement recognized that further efficiencies could be achieved in its cement manufacturing process. It looked to investing in comprehensive operational and control technologies to manage and derive productivity and energy efficiency gains from the assets on Line 2, their second plant in India.
Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations
Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.
Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.
Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.