Case Studies > Accelerated Customer Onboarding and Credit Approvals with Automated Systems

Accelerated Customer Onboarding and Credit Approvals with Automated Systems

Customer Company Size
Large Corporate
Region
  • America
Country
  • United States
  • Brazil
Product
  • Credit Cloud
Tech Stack
  • Artificial Intelligence
  • Autonomous Systems
  • SaaS
Implementation Scale
  • Enterprise-wide Deployment
Impact Metrics
  • Cost Savings
  • Productivity Improvements
  • Customer Satisfaction
Technology Category
  • Functional Applications - Enterprise Resource Planning Systems (ERP)
  • Analytics & Modeling - Predictive Analytics
Applicable Industries
  • Agriculture
  • Mining
Applicable Functions
  • Business Operation
  • Quality Assurance
Services
  • Cloud Planning, Design & Implementation Services
  • System Integration
About The Customer
Mosaic is the largest US producer of potash and concentrated phosphate, serving farmers globally. Headquartered in Tampa, Florida, this Fortune 500 company operates in six countries and reported a revenue of $8.9 billion in 2020. Mosaic employs a large workforce to manage its extensive operations and is a key player in the agriculture industry.
The Challenge
Mosaic faced significant challenges in their credit process within the order to cash cycle. Administering from North America and Brazil, they had a complex credit approval hierarchy with 7 to 10 layers of approval, which slowed down the process and affected customer experience. Additionally, they had to manually fetch credit data from various sources, which was time-consuming and labor-intensive. Their rigid credit scoring model did not account for country-specific risk factors, making it inefficient. Furthermore, the lack of real-time visibility into negative payment trends and macroeconomic fluctuations hindered their ability to proactively manage credit risk.
The Solution
Mosaic leveraged HighRadius' Credit Cloud solution to address their challenges. The AI-based solution automated the approval workflow by categorizing customers into different risk buckets, enabling auto-approvals for low-risk customers and redirecting higher value approvals to senior management. The solution also automated the aggregation of credit data from multiple global and local agencies, reducing manual effort. Customized credit scoring models allowed Mosaic to develop credit limits based on specific business units and risk segments. Real-time credit risk monitoring provided continuous oversight of customer portfolios, alerting the credit team to any changes in risk and recommending revised terms.
Operational Impact
  • The automated approval workflow significantly reduced the number of approval layers, streamlining the process.
  • Auto-aggregation of credit data from multiple sources minimized manual effort and improved efficiency.
  • Customized credit scoring models provided more accurate and flexible credit assessments.
  • Real-time credit risk monitoring enabled proactive management of credit risk, enhancing overall risk visibility.
  • The solution improved the customer experience by speeding up the credit approval process.
Quantitative Benefit
  • 50% reduction of credit approval layers.
  • 55.5% reduction in average approval time.
  • 15% increase in auto approvals.
  • 33.3% reduction in team size, resulting in savings in FTE cost.

Case Study missing?

Start adding your own!

Register with your work email and create a new case study profile for your business.

Add New Record

Related Case Studies.

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.